A Word on Queueing Networks
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Extracts from an email conversation between Roy Johnson and myself on queueing
networks, or 'queues within queues’, have appeared in recent editions of Nosokinetics News.
This article comprises a brief account of these networks.

Imagine a post-office-like counter system: customers enter at random, wait in line for a
free server, receive service and leave. Speaking roughly, the first half-century of the scientific
study of queues was concerned with understanding such systems; the second half-century
— bringing us up to the present day — has, additionally, glued these individual queues
together to form a network in which customers departing from one queue may join another.
This upward step of complexity is motivated by mathematical inquisitiveness together with
applications in computer science and manufacturing systems, but it could equally have been
prompted by patient flow through health care systems.

One may identify four kinds of queue, illustrated in Figure 1 [these diagrams are taken
from a bibliography of queues in health and medicine covering years to 2000 which is
available from myself j.preater@keele.ac.uk].
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Figure 1: Types of queueing system.

The simplest, single-server queue is a special case of the multi-server system already
mooted. The infinite-server queue, where the length-of-stay of a customer is not dependent



on the number of fellow customers, used quaintly to be proposed as a model for emergency
bed provision. These are the building blocks of networks. That depicted in the Figure
comprises four nodes: R and T are single-server, U is 2-server and S is infinite-server.
Customers — let us now say patients — enter the system by joining the queue at node R.
When their service there is complete they join one of the queues at S, T or U, and from
thence either leave the system or move to another node. Patients can therefore visit nodes
more than once. The interpretation and arrangement of nodes is the prerogative of the
modeller: for instance, R might represent a triage point, S a rest area, T a scanner and U
a suite of treatment rooms.

For any system, the primary purpose of the network model is to understand how per-
formance — measured by waiting times at nodes, lengths-of-stay in the system, congestion
patterns, resource utilization, etc. — is affected by the architecture of the system and by
the values of its parameters, such as external arrival rates, service rates and priority rules
at nodes. Models may either be specific to an actual system or generic, promoting under-
standing. As usual, there is a tension between simplicity, graspability and clarity of analysis
on the one hand and realism, relevance and plausibility on the other. There is often mileage
in building more than one model for the same system.

The remainder of this article concerns a simple toy network model of Lilliput Hospital.
The structure is shown in Figure 2.

Figure 2: Lilliput Hospital

Patients arrive at rate A at the infinite-server node A, representing acclimatization,
administration and assessment. The hospital has n beds, and Lilliputians admitted when all
beds are occupied are accommodated on small trolleys. Following an initial clinical decision
a proportion p of patients require treatment at node B, which is modelled as a single-
server, first-come-first-served queue; the other 1 — p are pronounced well and discharged.
Subsequent to treatment at B a patient moves to the infinite-server node C for recuperation
and to await another clinical decision: this entails, with probability ¢, further treatment
at B, or, with probability 1 — ¢, discharge. Thus a patient may undergo several rounds
of treatment. Mean lengths-of-stay at A and C are a and c, respectively, while the actual
procedure at B has mean duration b.



At this point, poised to investigate how performance relates to the parameters a, b, ¢,
p, q and n, the analyst asks, with bated breath, what are the statistical distributions of the
lengths-of-stay at nodes A and C and the procedure durations at B. The answer comes
back Exponential(-ish). Overjoyed the analyst proceeds to generate some results.

And here is a sample. First, for the system to be stable, i.e. for the mean occupancy to
be finite, it is necessary that

arrival rate = A < A* = (1 — ¢)/bp = maximum arrival rate.

Because of this it is convenient to choose as the final system parameter not A itself, but
rather
proportion of capacity used = x = A/A*.

Various performance measures of interest to the hospital or the patient may then be
calculated; for example:

throughput = A = z)\*,
mean occupancy = L = d+z/(1—1z),
mean length-of-stay in hospital = W = L/},
probability of admission to a trolley = piroley = 1 — Z e_dm(l — "),
m=0 :
where d = A(a + ¢p/(1 — ¢)). The third formula is the apposite Little’s law, which applies
to most stable queueing systems.

For numerical illustration let us suppose that n = 20 beds, a = 1 day, b = 0.2 days,
¢ = 2 days, p = 0.8 and ¢ = 0.3. The above formulae then yield the results in Table 1 for
different values of x; these evince the usual stark consequences of squeezing too close to
capacity.

z A L w Dtrolley
02 088 3.1 36 0.000
04 175 6.4 3.7 0.000
06 263 10.1 3.9 0.011
0.8 3,50 155 44 0.200
085 3.72 179 4.8 0.329
09 394 219 56 0.505
095 4.16 327 79 0.731
0.99 433 113.2 26.1 0.943

We must now return to why the analyst was so relieved. The fact is that Exponential
service times mean that the network is tractable mathematically. At the heart of this is
the (surprising) fact that if a snapshot is taken of Lilliput Hospital then the numbers of
patients at nodes A, B and C are statistically independent, having Poisson, Geometric and
Poisson distributions, respectively. In other words, this is a product-form network, and
by and large analysis of such can proceed apace without resort to simulation. Over the
last half-century the dividing line between product-form and non-product-form networks
has been mapped with ever greater precision and completeness, and it gets very technical.
Suffice it to say that the nice product-form would remain even if, for example, Lilliput
hospital replaced B with a complex of treatment nodes among which patients moved along



(up to a point) history-dependent pathways, if the service rate at a node depended on the
number of patients there and if patients who could not be provided with a bed were diverted
elsewhere. But; slip in one node at which the service time has, say, a uniform distribution,
or introduce dependence of one part of the system on another, or ... and the product-form is
lost. This does not mean that analytical progress is impossible — it depends on the precise
assumptions and what the analyst wishes to know — but things go less swimmingly.

If analytical approaches are not feasible then a simulation model is required. And this is
fine. Extra system complexities can be appended with ease, performance statistics collected
and a helpful user interface designed, perhaps incorporating an animation of patient flow
through the system (such models are common in manufacturing). The price one pays is
that conclusions are less crisp and a lot of interaction with the model may be required to
acquire a reasonable understanding of system behaviour.

The best place to start to learn about queueing networks is probably selected chapters
of general Operational Research texts e.g., [1]. There are more technical treatments in
[2], in the classic [3] and in [4]. Beyond this there are scores of other monographs and
thousands of research articles in Operational Research and Applied Probability journals
and elsewhere; these often concentrate on mathematical properties, but nevertheless have
an eye to applications.
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