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Abstract

Phase-type distributions constitute a very versatile class of distributions.
They have been used in a wide range of stochastic modelling applications
in areas as diverse as telecommunications, finance, biostatistics, queue-
ing theory, drug kinetics, and survival analysis. Their use in modelling
systems in the health and social care industry, however, has so far been
limited. In this paper we introduce phase-type distributions, give a sur-
vey of where they have been used in the health and social care industry,
and propose some ideas on how they could be further utilized.
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1 Introduction

Since their introduction by Neuts [35] in 1975, phase-type (PH ) distributions have been
used in a wide range of stochastic modelling applications in areas as diverse as telecom-
munications, finance, teletraffic modelling, biostatistics, queueing theory, drug kinetics,
reliability theory, and survival analysis. PH distributions have enjoyed such popularity
because they constitute a very versatile class of distributions defined on the nonnegative
real numbers that lead to models which are algorithmically tractable. Their formulation
also allows the Markov structure of stochastic models to be retained when they replace the
familiar exponential distribution.

Erlang [10], in 1917, was the first person to extend the exponential distribution with
his “method of stages”. He defined a nonnegative random variable as the time taken to
move through a fixed number of stages (or states), spending an exponential amount of time
with a fixed rate in each one. Nowadays we refer to distributions defined in this manner as
Erlang distributions. Neuts [35] generalized Erlang’s method of stages by defining a PH
random variable as the time spent in the transient states of a finite-state continuous-time
Markov chain with one absorbing state, until absorption.

Prior to Neuts’s work much of the research in stochastic modelling and queueing theory
relied on random variables of interest and service times being modelled by the exponential
or Erlang distributions, and point and interarrival processes by the Poisson or Erlang
renewal processes. PH distributions constitute a much more useful class of distributions
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for a number of reasons. First, they form a versatile class of distributions that are dense
in the class of all distributions defined on the nonnegative real numbers. That is, they can
approximate any nonnegative distribution arbitrarily closely (see Asmussen [2, Theorem
4.2]), although the number of states needed may be large. Second, since they have a
simple probabilistic interpretation in terms of continuous-time Markov chains, they exhibit
a Markov structure which enables an easier analysis of models that use them instead
of general distributions. Lastly, the use of PH distributions in stochastic models often
enables algorithmically tractable solutions to be found. If PH distributions are used,
many quantities of interest that are used in algorithms to compute performance measures
can be expressed simply in terms of the inverse and exponential of matrices that contain
only real entries. These calculations can nowadays be done relatively easily using a suitable
software package such as MATLAB r©.

For a comprehensive theoretical treatment of PH distributions see Neuts [36, Chapter
2]. Latouche and Ramaswami [26, Chapter 2] is a very readable introduction to the
topic. The literature on the theory and application of PH distributions is vast and both
of the abovementioned books provide extensive bibliographies. The two entries in the
Encyclopedia of Statistical Science on PH distributions, Shaked and Shanthikumar [47],
and Asmussen and Olsson [4], also provide excellent introductions to the subject.

Over the last two decades PH distributions have been used to some extent in health
and social care modelling, and their usage has increased over the last two or three years.
However, the extent to which they have been implemented is somewhat limited. First
Coxian (see Cox [7]) distributions (a subclass of PH distributions) have been used almost
exclusively. Most researchers have avoided using general PH type distributions because
they present some problems (for example, in fitting), but at the expense of developing
more versatile models. Second, the health and social care area in which PH (Coxian)
distributions have been used most widely has been in modelling the length of stay of
patients in geriatric facilities. While this work has been quite good it is hoped that with
this paper PH distributions can be better understood by practitioners and used in a
broader variety of ways in the health and social care sector.

The paper is organized as follows. In Section 2 we introduce the exponential distribution
and continuous-time Markov chains before formally defining PH distributions. We include
a subsection on fitting PH distributions. Section 3 contains a detailed discussion on where
PH distributions have been used in the health and social care industry. In Section 4 we
propose some ways in which PH distributions could be further utilized in health and social
care modelling. The paper concludes with Section 5.

2 Phase-type Distributions

2.1 The Exponential Distribution

The exponential distribution is ubiquitous in stochastic modelling, mainly because of its
simplicity and ability to model random lengths of time reasonably well. For example,
it has been used to model the length of stay in a hospital bed, or the time between
presentations to an emergency department. In this short subsection we introduce the
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exponential distribution and list some of its properties. Refer to Norris [40, Section 2.3]
or Ross [44, Section 5.2] for further information about the exponential distribution.

A continuous nonnegative random variable T is distributed according to an exponential
distribution with parameter λ > 0, if its distribution (or cumulative distribution) function,
defined for t ≥ 0, is given by

P (T ≤ t) = F (t) = 1 − e−λt. (2.1)

The density (or probability density) function of T , defined for t ≥ 0, is given by

f(t) = F ′(t) = λe−λt. (2.2)

The expected value of T , or its mean, is E(T ) = 1
λ

, and its variance is V(T ) = 1
λ2

.

The simplicity in using the exponential distribution in stochastic modelling is not only
due to its formulation in terms of a single parameter λ, but also because of the so called
memoryless property. That is, for s, t ≥ 0, P (T > s + t|T > t) = P (T > s), see Norris
[40, pages 70–71] or Ross [44, pages 201–204]. The memoryless property enables simple
expressions for many performance measures of stochastic models that use the exponential
distribution to be given. We also remark here that the exponential distribution is the only
continuous distribution that exhibits the memoryless property.

While the exponential distribution has been used extensively in stochastic modelling, its
main drawback its lack of versatility, being characterized by only one parameter. We need
to seek another, more versatile class of distributions which exhibit some of the favourable
properties of the exponential distribution. PH distributions are one such class.

2.2 Markov Chains

Before we formally define PH distributions in the next subsection, we introduce, by way of
an example, the finite-state continuous-time Markov chain, one of the most powerful tools
used in stochastic modelling, see Norris [40, Chapter 2] or Ross [44, Chapter 6] for further
properties of Markov chains.

Figure 2.1 shows the state transition diagram for a finite-state continuous-time Markov
chain. The Markov chain consists of four states, states 1, 2, and 3 are called transient
states, and state 0 an absorbing state. A state is transient if once it has been reached,
the probability of returning to it is less than one, and a state is absorbing if once it has
been reached the process stops. We choose any of states 0, 1, 2, and 3, according to
the probabilities 1

10
, 1

2
, 3

10
, and 1

5
, respectively. The probability of being instantaneously

absorbed, that is 1

10
, is known as the point mass at zero. Suppose that state 1 has been

chosen. We spend an exponentially distributed length of time with parameter λ = 12
there. This parameter can be interpreted as the (average) rate of movement out of state
1. Once we have completed this time we move to either state 0 or state 2 with (average)
rates 8 and 4, respectively. Alternatively, we move from state 1 to state 0 with probability
8

12
= 2

3
, or to state 2 with probability 4

12
= 1

3
, respectively. If we chose state 0 we stop, but

if we chose state 2 we spend an exponentially distributed length of time with λ = 10 there,
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Figure 2.1: State transition diagram of a 4-state continuous-time Markov chain with one
absorbing state.

and so on until absorption. The various rates have been chosen so that with probability
one absorption occurs eventually.

In order to describe the Markov chain we need three descriptors.

1. A state space S = {0, 1, 2, 3}.

2. An initial state probability distribution

(α0,α) =
(

1

10

1

3

2

5

1

6

)

(2.3)

which governs the selection of the initial state, α0 being the point mass at zero.

3. An infinitesimal generator

Q =









0 0 0 0
4 −12 8 0
0 5 −10 5
2 4 0 −6









(2.4)

which governs the transitions between states.

The rows (labelled 0, 1, 2, and 3) of Q correspond to the state we move from, and the
columns (labelled 0, 1, 2, and 3) correspond to the state we move to. The zeroth row
consists of all zeros because once we have reached state 0 (absorption) we stay there. The
remaining diagonal entries are negative and the off diagonal entries nonnegative, with all
row sums equal to zero. The absorption rates from states 1, 2, and 3 are 4, 0, and 2,
respectively. The distribution of time from start to finish (absorption), in the Markov
chain, is said to have a PH distribution which we formally define in Subsection 2.3. We
also note that, in practice, the point mass at zero α0 is rarely necessary.
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2.3 Phase-type Distributions

Consider a continuous-time Markov chain on a finite state space S = {0, 1, 2, . . . , p}
where state 0 is absorbing. Let the initial state probability distribution be (α0,α) =

(α0, α1, . . . , αp) (with

p
∑

i=0

αi = 1) and the infinitesimal generator be Q. The random vari-

able that is defined as the time to absorption, is said to have a (continuous) PH distribu-
tion, see Neuts [36].

The infinitesimal generator for the Markov chain can be written in block-matrix form
as

Q =

(

0 0

t T

)

. (2.5)

Here, 0 is a 1 × p vector of zeros. The vector t = (t10, t20, . . . , tp0)
′ (the prime denoting

transpose) where, for i = 1, 2 . . . p, ti0 ≥ 0, with at least one of the ti0s positive, is the
absorption rate from state i. The p × p matrix T = [tij] is such that, for i, j = 1, 2, . . . , p,
with i 6= j,

tij ≥ 0, (2.6)

and

tii = −

p
∑

j = 0

j 6= i

tij, (2.7)

that is, t = −Te where e is a p × 1 vector of ones. The PH distribution is said to have a
representation (α,T ) of order p. The matrix T is referred to as a PH generator. The point
mass at zero α0 is completely determined by α and therefore does not need to appear in
the expression for the representation. Typically representations are not unique and there
must exist at least one representation of minimal order. Such a representation is known as
a minimal representation, and the order of the PH distribution itself is defined to be the
order of any of its minimal representations.

To ensure absorption in a finite time with probability one, we require that every non-
absorbing state is transient. This statement is equivalent to T being invertible, see Neuts
[36, Lemma 2.2.1], or Latouche and Ramaswami [26, Theorem 2.4.3]. An additional re-
quirement on the PH representation (α,T ) is that there are no superfluous phases. That
is, each phase in the Markov chain defined by α and T has a positive probability of being
visited before absorption. If this is the case, then we say that the PH representation is
irreducible, see Neuts [36, page 48]. This condition is equivalent to the matrix

T ∗ = T − (1 − α0)
−1Teα, (2.8)

being irreducible. For the definition of an irreducible matrix see Seneta [46, pages 18 and
46].

A PH distribution with representation (α,T ) has distribution function, defined for
t ≥ 0, given by

F (u) =

{

α0, t = 0
1 − α exp(T t)e, t > 0,

(2.9)
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see Neuts [36, Lemma 2.2.2], or Latouche and Ramaswami [26, Theorem 2.4.1]. Differen-
tiating (2.9) with respect to t gives the corresponding density function, defined for t > 0,

f(t) = −α exp(T t)Te. (2.10)

The Laplace-Stieltjes transform (LST ) of (2.9), which is defined for s ∈ C such that
<(s) > δ where δ is the real and negative eigenvalue of maximal real part of T (see Neuts
[37]), is given by

φ(s) =

∫ ∞

0

e−stdF (t)

= −α(sI − T )−1Te + α0. (2.11)

For k = 1, 2, . . ., differentiating (2.11) k times with respect to s and letting s → 0 gives
the kth noncentral moment

mk = (−1)kk!αT−ke. (2.12)

We now give some examples of PH distributions.

1. The exponential distribution. The minimal representation is

α =
(

1
)

(2.13)

T =
(

−λ
)

. (2.14)

2. The order p generalized Erlang distribution. This distribution can be described
using a state transition diagram that has p states in series, see Figure 2.2. It is easy
to see, without loss of generality, that the states can be ordered so that the rates
0 < λ1 ≤ λ2 ≤ . . . ≤ λp. The representation for the generalized Erlang distribution

.....λ1 λ 2

λp

λp−1
1 2 p

Figure 2.2: State transition diagram for an order p generalized Erlang distribution.

corresponding to the state transition diagram is

α =
(

1 0 . . . 0
)

(2.15)

T =















−λ1 λ1 0 · · · 0
0 −λ2 λ2 · · · 0

0 0 −λ3

. . . 0
...

...
. . . . . .

...
0 0 0 · · · −λp















. (2.16)
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Figure 2.3 shows the density function for an order 5 Erlang distribution (that is, all
rates are equal). The density function for an Erlang distribution of order p, defined
for t > 0, is given by

f(t) =
λptp−1e−λt

p!
. (2.17)

The expression for the density function of a generalized Erlang distribution is com-
plicated by the fact that some of the rates may be unequal.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

f
Order 5 Erlang Density, λ = (1,1,1,1,1)

Figure 2.3: Density function of a order 5 Erlang distribution with λ1 = λ2 = λ3 = λ4 =
λ1 = 1.

All generalized Erlang distributions have coefficient of variation (that is, the ratio of
the variance to the mean squared) less than or equal to one. In fact, the exponential
distribution, which is a degenerate case of the generalized Erlang distribution, is the
only one that has coefficient of variation equal to one.

3. The order p hyperexponential distribution. This distribution can be described using
a state transition diagram with p states in parallel, see Figure 2.4. Clearly, without
loss of generality, the states can be ordered so that the rates 0 < λ1 < λ2 < . . . < λp.
The corresponding representation is

α =
(

α1 α2 . . . αp

)

(2.18)

T =











−λ1 0 . . . 0

0 −λ2

. . . 0
...

. . . . . .
...

0 0 . . . −λp











, (2.19)

with density function, defined for t > 0, given by

f(t) =

p
∑

i=1

αiλie
−λit, (2.20)
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α1 α 2

.....

..... αp

λ1 λ 2 λ

1 2

p

p

Figure 2.4: State transition diagram for an order p hyperexponential distribution.

where, for i = 1, 2, . . . , p, αi > 0 and

p
∑

i=1

αi = 1. Figure 2.5 shows an example of

the density function of a order 3 hyperexponential distribution. Hyperexponential

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

x

f

Order 3 Hyperexponential Density, α = (0.5, 0.1, 0.4), λ = (0.1, 1, 10)

Figure 2.5: Density function of an order 3 hyperexponential distribution with α =
(0.5, 0.1, 0.4), and λ1 = 0.1, λ2 = 1, and λ3 = 10.

distributions have coefficient of variation greater than or equal to one (the exponential
distribution is the only one that attains equality here).

4. The order p Coxian distribution. The state transition diagram for this distribution
is shown in Figure 2.6. They have representations of the form

α =
(

α1 α2 . . . αp

)

(2.21)

T =















−λ1 λ1 0 . . . 0
0 −λ2 λ2 . . . 0

0 0 −λ3

. . . 0
...

...
. . . . . .

...
0 0 0 . . . −λp















. (2.22)
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α1 α 2 αp

.....

.....

λ1 λ 2

λp

λp−1
21 p

Figure 2.6: State transition diagram for an order p Coxian distribution.

Although it is not obvious, in this case, without loss of generality, the states can be
ordered so that the rates 0 < λ1 ≤ λ2 ≤ . . . ≤ λp, see Cumani [8] or O’Cinneide [41].
Figure 2.7 shows the density function for an order 4 Coxian distribution. Its shape
exemplifies the extra flexibility Coxian distributions exhibit over generalized Erlang
and hyperexponential distributions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

f

Order 4 Coxian Density, α = (0.1, 0.8, 0, 0.1), λ = (1, 2, 3, 4)

Figure 2.7: Density function of an order 4 Coxian distribution with α = (0.1, 0.8, 0, 0.1),
and λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4.

5. The acyclic, or triangular PH (TPH ) distribution. This type of PH distribution
have generators that are upper triangular matrices. Cumani [8] (see also O’Cinneide
[41]) showed that any TPH representation has a Coxian representation of the same
or lower order.

6. The order p unicyclic distribution. These distributions have state transition diagrams
as shown in Figure 2.8. They have representations of the form
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α1 α 2 αp

.....

.....

µ

µ

µ

p−1

λ1 λ 2

λp

λp−1
1 2 p

2

1

Figure 2.8: State transition diagram for an order p unicyclic distribution.

α =
(

α1 α2 . . . αp

)

(2.23)

T =



















−λ1 λ1 0 . . . 0 0
0 −λ2 λ2 . . . 0 0

0 0 −λ3

. . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . −λp−1 λp−1

µ1 µ2 µ3 . . . µp−1 −λp



















, (2.24)

where for i = 1, 2, . . . , p − 1, µi ≥ 0, 0 < λ1 ≤ λ2 ≤ . . . ≤ λp, and λp >

p−1
∑

i=1

µi,

see O’Cinneide [42, Section 7]. Figure 2.9 shows the density function for an order
5 unicyclic distribution. It was conjectured in O’Cinneide [42, Conjecture 4] that

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

f

Order 5 Unicyclic Density, α = (0, 0, 0, 1, 0), λ = (1, 2, 3, 4, 5), µ = (1, 1, 1, 1)

Figure 2.9: Density function of an order 5 unicyclic distribution with α = (0, 0, 0, 1, 0),
λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4 and λ5 = 5, and µ1 = µ2 = µ3 = µ4 = 1.

every PH distribution of order p has a unicyclic representation of the same order,
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however, He and Zhang [23] showed that this is not, in general, the case.

2.4 Fitting Phase-type Distributions

In order to use PH distributions to model real world phenomena we need reliable methods
to fit empirical data and approximate probability distributions with them. The aim of any
fitting procedure is to estimate the parameters α and T so that they best fit the data in
some sense. In approximating a probability distribution with a PH distribution the param-
eters α and T need to be selected so that a predetermined function of the approximated
distribution and the approximating PH distribution is minimized. In this subsection we
give a brief overview of some of the PH fitting and distribution approximation algorithms
found in the literature. The survey is by no means complete and we refer the reader to
the comprehensive reference lists given in Asmussen, Nerman, and Olsson [3], Bobbio and
Cumani [6], and Johnson [25] for more information.

Maximum likelihood estimation has been the most popular method used to fit data
and approximate distributions with PH distributions. Asmussen, Nerman, and Olsson
[3] (see also Asmussen [1]) developed an expectation-maximization (EM ) algorithm (see
Dempster, Laird, and Rubin [9], or McLachlan and Krishnan [33]) to calculate maximum
likelihood parameter estimates for general PH distributions when fitted to empirical data.
In a companion paper Olsson [43] extended the algorithm so that it could be used with
right-censored and interval-censored data. The original and extended algorithms are avail-
able as the downloadable package EMpht1. Bobbio and Cumani [6] developed an algorithm
to fit Coxian distributions to empirical data, with the option of including right-censored
data, using maximum likelihood estimation. In order to find the parameters that maxi-
mized the loglikelihood function the resulting nonlinear program was solved by combining
a linear program with a line search at each iteration. Faddy [13], [14], and [15], Faddy and
McClean [17], and Hampel [22] used maximum likelihood estimation to fit Coxian distribu-
tions to real data. They used existing MATLAB r© or S-PLUS r© routines (for example the
Nelder-Mead algorithm in MATLAB r©, see Nelder and Mead [34]) to perform the required
parameter estimation. In Faddy [16] a penalized maximum likelihood method was devel-
oped to fit Coxian distributions to data. Coxian representations where T had disparate
eigenvalues (that is, diagonal entries for upper triangular matrices) were penalized in the
fitting process. This restriction resulted in smoother fitted density functions.

The method of moment matching has also been used to fit PH distributions to data
and approximate probability density functions. Johnson [25] developed an algorithm that
matched the first three moments of a mixture of Erlang distributions to the respective mo-
ments of empirical data or a distribution. The nonlinear optimization program, which re-
sulted from the parameter estimation or distribution approximation technique, was solved
using sequential quadratic programming. Schmickler [45] also developed a moment match-
ing algorithm where the first three moments of a mixture of two or more Erlang distribu-
tions were matched exactly to the respective moments of an empirical distribution function.
The Nelder-Mead algorithm was used to solve the resulting nonlinear program.

Other methods for PH fitting and approximation have also been used. Horvath and

1http://home.imf.au.dk/asmus/pspapers.html
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Telek [24] developed a method which separately approximated the main part and the tail
of an arbitrary distribution defined on the nonnegative real numbers with a PH distri-
bution. The main part of the distribution was approximated with a Coxian distribution
by minimizing any distance (goal) function of the approximated and approximating den-
sities. A nonlinear programming procedure similar to that of Bobbio and Cumani [6] was
used to perform the minimization. The tail was approximated with a hyperexponential
distribution using a heuristic method. Faddy [11] and [12] used least squares to fit Coxian
distributions to real sample data in order to estimate the parameters for a compartmental
model used in drug kinetics. A quasi-Newton minimization algorithm was used to perform
the parameter estimation.

3 Phase-type Distributions in the Health and Social

Care Industry

There have been a number of papers written on the application of PH distributions in
the health and social care literature, but as we shall see, the number of areas where they
have been used is rather limited. Most papers concern the modelling of the length of stay
in geriatric facilities, and these papers have been written by a relatively small pool of
researchers. In this section we present a literature review on the use of PH distributions
in the health and social care sector.

Faddy [11] used a two-compartment model, such as the one depicted in Figure 3.1, to
model the outflow of labelled red blood cells injected into a rat liver. Each compartment
represents a body organ, and the residency time the labelled cells spend in the body before
being excreted was modelled with a generalized Erlang distribution. In the resultant fit
m = 35, n = 1, λ = 7.60, and µ = 0.22. The value of m was large because of a delay of
about 3 seconds before any outflow was recorded. The method of least squares was used to
fit the data. In Faddy [12] a more complex two-compartment model (see Figure 3.2) was

1 2
λ λ ..... λ

m
λ

m + 1
µ

m + 2
µ ..... µ

µ

m + n

Figure 3.1: Two-compartment model to model the outflow of labelled red blood cells
injected into a rat liver.

used to model the retention time of a drug injected into an organ. The cycling in the first
compartment models diffusion, and the second compartment models the drug’s clearance
from the body. The model was fitted to the renal concentrations of an antibiotic drug in
four sheep that were given differing doses at t = 0. For n = 1 and m ≥ 4 it was reported
that λ = 0.028, µ = 0.018, and ν = 0.235. Again, the method of least squares was used to
fit the data.
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1 2 ..... m m + 1 m + 2 .....
λ λ

µµµ

λ

ν

λ ν ν ν
m + n

Figure 3.2: Two-compartment model to model the diffusion and clearance of a drug injected
into a body organ.

Faddy [13] fitted Coxian distributions of increasing order to the length of treatment
for patients at risk of suicide using maximum likelihood estimation. In this case it was
deemed that an order three Coxian distribution was sufficient to model the data. The
representation for the Coxian distribution was given as

α =
(

1 0 0
)

(3.1)

T =





−(λ1 + µ1) λ1 0
0 −(λ2 + µ2) λ2

0 0 −µ3



 , (3.2)

which corresponds to the state transition diagram shown in Figure 3.3. This “drop out”

λ 1 λ 2

µ µ
21

µ
3

1 2 3

Figure 3.3: State transition diagram for a “drop out” order three Coxian distribution.

representation is equivalent to the “drop in” representation given by equations (2.21) and
(2.22). Here, it was noticed that in the fitted T , λ1 + µ1 ≈ λ2 + µ2. A further order
three fit with the constraint λ1 + µ1 = λ2 + µ2 was made and compared with the original
order three fit. It was this phenomenon that lead to the penalized maximum likelihood
estimation described in Faddy [16]. A similar approach was taken by Faddy and Taylor [19]
to model the time to onset of bronchiolitis obliterans syndrome (BOS ) for lung transplant
patients. In this case, three covariates were also included in the model. They were the
number of rejections (x1), the number of infections (x2), and cytomegalovirus episodes
(x3) in the post operative period before the onset of BOS. They were incorporated via the
parameters of T , that is,

λi = exp(ci − b1x1 − b2x2 − b3x3), i = 1, 2, . . . , p − 1, (3.3)

µi = exp(di − b1x1 − b2x2 − b3x3), i = 1, 2, . . . , p, (3.4)
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where the parameters b1, b2, b3, c1, c2, . . . , cp−1, and d1, d2, . . . , dp are real numbers. In the
example given, the order of the most suitable PH fit was p = 2.

McClean and Millard [32], while not specifically referring to PH distributions, fitted
an order two hyperexponential distribution to the length of stay of patients in a geriatric
medicine department. That is, the density function for the length of stay distribution, for
t ≥ 0, λ1, λ2 > 0, and 0 < ρ < 1, was given by

f(t) = ρe−λ1t + (1 − ρ)e−λ2t. (3.5)

They fitted the data for male and female patients separately. The two states in the model
represented acute/rehabilitative (short stay) patients, and long stay patients. Patients
who left the system by either being discharged or dying were categorized as short stay,
and those who left by being transferred elsewhere, as long stay. The parameter ρ was
estimated by the proportion of (either male or female) short stay patients, and λ1 and λ2

by the reciprocal of the mean length of stay for short and long stay patients, respectively.
The model was improved by fitting a mixture of a lognormal distribution (for short stay)
and an exponential distribution (for long stay).

In Faddy and McClean [17] Coxian distributions of increasing order were fitted to the
male patient data used by McClean and Millard [32] using maximum likelihood estimation.
Two covariates, the age of patient at admission, and the year of admission were incorpo-
rated into the model in the same way as in Faddy [13]. Unlike McClean and Millard [32],
here the Coxian distribution was fitted first, and then an interpretation sought. If, for
example, a three state model (see equations (3.1) and (3.2)) was fitted, the states could
be interpreted as representing severity of illness, leading to a characterization for “short
stay”, “medium stay”, and “long stay” patients. If absorption takes place from the first
state then the patient could be classified as short stay, from the second state, medium stay,
and so on. If more states are used a similar interpretation can be given. Hence, the Coxian
distribution can be interpreted as a mixture of generalized Erlang distributions with, for
the order three case, mixing coefficients

p1 =
µ1

µ1 + λ1

(3.6)

p2 =
λ1µ2

(µ1 + λ1)(µ2 + λ2)
(3.7)

p2 =
λ1λ2

(µ1 + λ1)(µ2 + λ2)
. (3.8)

These mixing coefficients from the fitted distribution would model the proportion of short,
medium, and long stay patients, respectively. Faddy and McClean [17] fitted the abovemen-
tioned dataset with an order four Coxian distribution (loglikelihood = −9332.5) without
including the two covariates, but noted that when they were included the loglikelihood in-
creased to −9310.2. They also remarked observing the same kind of parameter redundancy
mentioned in Faddy [12].

Faddy and McClean [18] extended their earlier work by not only modelling the length
of stay in geriatric care, but also the length of stay for geriatric patients in community
care. Penalized maximum likelihood estimation was used to fit the data. In McClean,
Faddy, and Millard [30] a similar approach was taken to assign patients to clusters (for
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example, short stay, medium stay, and long stay if an order three Coxian distribution is
used) based on the time already spent in care and the two covariates, age at admission
and year of admission. The aim of this study was to develop a model to predict how long
a patient remains in care given information about these three predictors.

Gorunescu, McClean, and Millard [20] modelled the patient flow through a hospital
department using a steady state M/PH/c/c queue (the authors refer to this queue as a
M/PH/c queue). That is, the interarrival time is exponentially distributed, the service
time (time spent occupying a bed) is distributed according to a PH distribution, there
are c beds in the department, and the capacity of the system (queue plus beds) is c. We
can see that there is no queuing, that is, in theory, if a patient arrives to find the ward
fully occupied they are lost to the system. In reality, depending on their condition, such
a patient would be found a bed elsewhere. We note that, despite modelling the service
time with a PH distribution, the performance measures that were considered, that is, the
probability of all beds being occupied (the blocking probability), and the mean number
of occupied beds, only depend on the mean service time and not on the the service time
distribution. The authors did mention this fact. Using some real data from a geriatric
department, the authors presented an example where the minimum number of beds was
calculated given that a specified blocking probability cannot be exceeded. The number of
beds that minimized the average cost per unit time was also calculated.

Marshall and McClean [27] fitted conditional Coxian distributions to the length of stay
data for geriatric patients. The term conditional was used because the data was first cat-
egorized according to a Baysian belief network, and then fitted using maximum likelihood
estimation. A Bayesian belief network is a model that links various causal characteristics
of the data in some meaningful way. For example, in the paper, each patient’s age, gender,
and admission method contributed to their Barthel grade (heavily dependent, very depen-
dent, slightly dependent, or independent), and anticipated final destination (death, home,
or transfer). This information, all determined beforehand, enabled the patient length of
stay data to be categorized into 12 groups. A Coxian distribution was fitted to each catego-
rized dataset in turn. The aim of this approach was to be better able to predict a patient’s
length of stay by utilizing prior information, in this case, Barthel grade and anticipated
final destination.

Xie, Chaussalet, and Millard [49] modelled the length of stay of geriatric patients
in residential and nursing home care with a more complex PH representation than had
previously been used. The times spent in residential and nursing home care were both
modelled with a Coxian distribution. Figure 3.4 shows the state transition diagram for the
model. Patients enter the system via the residential home care block consisting of states 1
and 2, and spend either a short time (state 1), or a long time (states 1 and 2) there before
either leaving the system (state 0), or progressing to nursing home care, where, again, they
can spend a short time (state 3), or a long time (states 3 and 4) before leaving. The PH
representation for the model depicted in Figure 3.4 is

α =
(

1 0 0 0
)

(3.9)

T =









−(λ1 + µ1 + ν1) λ1 ν1 0
0 −(λ2 + µ2) λ2 0
0 0 −(λ3 + µ3) λ3

0 0 0 −µ4









. (3.10)
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A Coxian distribution of more than order two may be used to model the length of stay in
residential or nursing home care, resulting in a model of higher order. We remark here that
the distribution with representation given by equations (3.9) and (3.10) is Coxian since T

is an upper triangular matrix.

1 2 3 4

0

longshort short long

Nursing homeResidential

Discharge

λ λ λ

µµµ µ

ν

4

2 31

1 2 3

1

Figure 3.4: State transition diagram to model the length of stay in residential and nursing
home care.

In order to fit the model to the data the authors first established the number of states
needed to model the residential and nursing home length of stays separetely. They did this
by fitting mixtures (not necessarily convex) of exponential distributions of increasing order
to the data, and then used both the Aikaike and Bayesian information criteria to determine
the optimal number of states required. Then, a Coxian distribution with the appropriate
structure was fitted to the whole dataset. The authors fitted the model to some real data,
and found that the residential home care length of stay was modelled sufficiently well with
an exponential distribution, and the nursing home length of stay with an order two Coxian
distribution.

A summary of the current state of affairs with modelling the length of stay in hospital
departments was given in Marshall, Vasilakis, and El-Darzi [28], and Vasilakis and Marshall
[48]. Both papers expalained the various techniques for modelling length of stay includ-
ing descriptive statistics, survival analysis, compartmental models, simulation modelling,
mixed exponential distributions, PH distributions, and conditional PH distributions. In
Vasilakis and Marshall [48] some of the methods were illustrated by modelling the length
of hospital stay of stroke patients over the age of 65 in the UK.

Gribbin and McClean [21] (see also, McClean [29], and McClean and Gribbin [31])
modelled the length of time nurses took to return to service after a temporary interlude
with compartment models. The models were fitted to data from the Northern Ireland
nursing service and then analysed. Here, it is interesting to note that the focus is on
human resource management in the healthcare industry, rather than on the patient care
process as have been most of the other applications of PH distributions in healthcare
modelling.

16



This discourse on the use of PH distributions in the health and social care sector is by
no means complete, and the reference lists given in the abovementioned papers should be
referred to for further information.

4 Phase-type Distributions and Modelling the Pa-

tient Care Process

As mentioned in the previous section, the use of PH distributions in the health and social
care sector has been limited, not only because of the relatively few areas in which they have
been applied, but also because of the almost exclusive use of Coxian distributions to model
lengths of stay. In this section we propose some ways in which the use of PH distributions
could be extended in health and social care modelling, in particular in modelling the patient
care process.

Phase-type distributions can be used to fit any length of stay or interarrival data,
not just the ones that have been discussed in the previous section. It appears that Coxian
distributions are used because they are easy to fit, and also offer a simple interpretation for
the length of stay. However, if general, or even unicyclic, phase-type distributions are used,
fits with smaller order may be achieved. For example, Figure 4.1 shows an order 6 general
PH distribution fitted (using EMpht) to some data (truncated at 30 days) consisting of
4696 lengths of stay of patients at the Royal Melbourne Hospital that were transferred
from other hospitals. The resultant representation is

α =
(

1 0 0 0 0 0
)

(4.1)

T =

















−3.21 3.21 0 0 0 0
0 −3.21 0 3.21 0 0

0.61 0 −0.63 0 0.02 0
0 0 0 −3.21 0 3.21
0 0 0.81 0 −0.81 0
0 0 0 0 1.65 −3.21

















. (4.2)

The algorithm took approximately 23 minutes to perform 30,000 iterations, and the log-
likelihood was −11706.92. The fit is shown in Figure 4.1. As we can see it looks very good.
It is not Coxian as the eigenvalues of T are not all real. In fact, a Coxian distribution of
order 25 is required to achieve a fit with a greater loglikelihood. In this situation a non-
Coxian distribution gives a PH representation of much lower order which will be easier to
use in the calculation of any performance measures.

More sophisticated models could be used to model lengths of stay and interarrival
times in the health and social care industry. Consider the (simplified) schematic diagram
for patient flow in a hospital shown in Figure 4.2. Patients enter the hospital via the
emergency department (unit 1), or as elective patients. Patients who have had surgery
(unit 2) enter the intensive care unit (unit 3), and then the high dependency ward (unit 4)
before being sent to one of the two wards (units 5 and 6). Emergency patients can either
have surgery, or be sent to one of the two wards. Patients may return to the intensive care
unit if their condition warrants it. Patients are discharged only from the two wards. To
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Figure 4.1: Order 6 PH fit to the length of stay histogram.

model the length of time a patient stays in hospital we could, for i = 1, 2, 3, 4, 5, 6, model
the time spent in unit i, with an order pi PH distribution. The overall PH distribution
would have a representation of the form

α =
(

α1 α2 0 0 0 0
)

(4.3)

T =

















T 11 T 12 0 0 T 15 T 16

0 T 22 T 23 0 0 0

0 0 T 33 T 34 0 0

0 0 T 43 T 44 T 45 T 46

0 0 T 53 0 T 55 0

0 0 T 63 0 0 T 66

















. (4.4)

Here, α1 and α2 are nonnegative and nonzero vectors, whose dimensions are 1 × p1 and
1× p2, respectively, with (α1 + α2)e = 1. Also, for i = 1, 2, 3, 4, 5, 6, T ii is an order pi PH
generator, and for (i, j) ∈ {(1, 2), (1, 5), (1, 6), (3, 4), (4, 3), (4, 5), (4, 6), (5, 3), (6, 3)}, T ij is
a pi × pj nonnegative and nonzero matrix. For this structure the absorption rate vector
has the form

t =

















0

0

0

0

t5

t6

















(4.5)

where t5 = −(T 53 + T 55)e and t6 = −(T 63 + T 66)e are nonnegative and nonzero vectors
of dimensions p5 × 1 and p6 × 1, respectively. All zero matrices have the appropriate
dimension.

The simplest PH distribution with representation (α,T ) given by (4.3) and (4.4) is
where the length of stay in each unit is exponentially distributed. In this case the PH
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Figure 4.2: Schematic diagram for patient flow in a hospital.

distribution that models the overall length of stay would be an order 6 non-Coxian distri-
bution because of the cycling. In order to estimate the parameters for this PH distribution
one method is to fit an exponential distribution to the data from each unit, and then deter-
mine the proportions of patients that move between the units to estimate the off-diagonal
entries of T . Another method is to fit an order 6 PH distribution with the required struc-
ture to the whole length of stay data. The first method is probably the simplest in terms
of the fitting procedure, and more accurate, but requires much more patient data. To get
a better fit, however, we may decide to use a PH or Coxian distribution to model the time
spent in each unit, and then combine them to create a larger PH distribution. In this
case, fitting the data from each unit separately (given that the data is readily available)
would be relatively simple using, say, EMpht, but estimating the parameters of the off
diagonal matrices could be problematic. Fitting the entire distribution as a whole may be
computationally infeasible as the order of the fitting PH distribution may be quite high.

More sophisticated methods exist to calculate performance measures such as steady
state probabilities, blocking probabilities, expected waiting times, and mean queue lengths,
in queues whose arrival and service times are modelled with PH distributions. We have
already seen in Gorenescu, McClean, and Millard [20] that patient flow through a hospital
ward can be modelled with a M/PH/c/c queue. The branch of computational probability
known as matrix-analytic methods (see Neuts [36], or Latouche and Ramaswami [26])
contains a vast literature on stochastic models that use PH distributions. Matrix-analytic
methods deals with the analysis of stochastic models, particularly queueing systems, using a
matrix formalism to develop algorithmically tractable solutions. The ever-increasing ability
of computers to perform numerical calculations has supported the growing interest in this
area. More sophisticated models such as the PH renewal process, the Markov-modulated
Poisson process (MMPP), the Markovian arrival process (MAP), and the quasi-birth-and-
death (QBD) process (see Neuts [36], [38], [39], Latouche and Ramaswami [26], Asmussen
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[2], and Bini, Latouche, and Meini [5], and the references therein) could be implemented
in health and social care modelling. The mathematics for these models is involved but the
modelling power is considerable.

5 Conclusion

In this paper we have introduced PH distributions, given a brief overview of some PH
fitting and approximation methods, and presented a comprehensive, although not exhaus-
tive, literature review on where PH distributions have been used in the health and social
care sector. In the last section we suggested some ways in which PH distributions could
be further utilized in health and social care modelling.

It is encouraging to note that, more recently, the use of PH distributions has increased.
Of the thirteen papers reviewed in Section 3, eight have been published in the last four
years. Despite this, the use of PH distributions needs to become more widespread, and
the level of sophistication of the models where they are used needs to increase. If this
is done, as has been the case in other industries (for example, telecommunications and
finance), more powerful mathematical models can be developed to address and solve some
of the important problems in the health and social care sector. It is hoped that, with
this paper, practitioners will not only use PH distributions more widely, but also look
to the established literature on matrix-analytic methods and stochastic modelling for the
mathematical tools required to develop suitable models that will help address and solve
problems in the sector.
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